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GROUP THEORY: PART III

Direct product of groups

Recall that the direct product of the groups (G1, ?1), . . . , (Gn, ?n) is the

group (G, ?), whereG = G1×. . .×Gn and for every (a1, . . . , an), (b1, . . . , bn) ∈

G we have

(a1, . . . , an) ? (b1, . . . , bn) = (a1 ?1 b1, . . . , an ?n bn).

Theorem: If G = G1 × . . . × Gn and (a1, . . . , an) ∈ G such that

o(ai) = ri for all i = 1, . . . , n, then o(a) = l.c.m(r1, . . . , rn).

Proof If this true for n = 2, then it is true for all positive integer

n (by using mathematical induction). So, it is enough to prove that

a = (a1, a2) ∈ G1 ×G2 =⇒ o(a) = l.c.m(r1, r2).

Let o(a) = r. Then ar = (ar1, ar2) = (e1, e2), where e1, e2 are the

identities of G1, G2 respectively. So, ar1 = e1 and ar2 = e2. This im-

plies r1|r and r2|r and hence r = r1r2s for some integer s. Therefore,

l.c.m(r1, r2)|r.

On the other hand, al.c.m(r1,r2) = (al.c.m(r1,r2)
1 , a

l.c.m(r1,r2)
2 ) = (e1, e2)

implies o(a) = r|l.c.m(r1, r2). Thus, o(a) = l.c.m(r1, r2).

Example: I. Find the order of the element (8, 4, 10) ∈ Z12 ×Z60 ×Z24.
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Let a = (8, 4, 10). Note that

o(8) = o(1)
gcd(8, 12) = 12

4 = 3 in Z12,

o(4) = o(1)
gcd(4, 60) = 60

4 = 15 in Z60,

o(10) = o(1)
gcd(10, 24) = 24

2 = 12 in Z24.

Thus, o(a) = l.c.m(3, 15, 12) = 60.

Example: II. Find all elements in Z4 × Z3 of order 12.

We know that Z4 = {0, 1, 2, 3} and Z3 = {0, 1, 2}. Let us construct
the following table:

a ∈ Z4 r1 = o(a) b ∈ Z3 r2 = o(b) l.c.m(r1, r2)

0 1 0 1 1 7

1 4 0 1 4 7

2 2 0 1 2 7

3 4 0 1 4 7

0 1 1 3 3 7

1 4 1 3 12 X

2 2 1 3 6 7

3 4 1 3 12 X

0 1 2 3 3 7

1 4 2 3 12 X

2 2 2 3 6 7

3 4 2 3 12 X

So, the only elements of order 12 in Z4 × Z3 are (1, 1), (3, 1), (1, 2)

and (3, 2).

Remark:

1. Every finite abelian group is a direct product of cyclic groups of

orders pα for some primes p and some positive integers α.
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2. If (G1, ?1), . . . , (Gn, ?n) are groups of order r1, . . . , rn, then G =

G1 × . . . × Gn is cyclic group if and only if gcd(ri, rj) = 1 for all

i 6= j.

3. Ifm = r1 . . . rn, then Zm ∼= Zr1 × . . .× Zrn
if gcd(ri, rj) = 1 for all

i 6= j.

4. If m = pr1
1 . . . p

rn
n is a prime factorization of m, where pi are all

distinct, then Zm ∼= Zpr1
1
× . . .× Zprn

n
.

Theorem: If G1, G2, G3 and G4 are groups, then

1. G1 ∼= G3 and G2 ∼= G4 implies G1 ×G2 ∼= G3 ×G4.

2. G1 ×G2 ∼= G2 ×G1.

3. G1 × (G2 ×G3) ∼= G1 ×G2 ×G3.

Proof

1. Suppose that G1 ∼= G3 via the isomorphism ϕ1,3 : G1 → G3 and

G1 ∼= G3 via the isomorphism ϕ2,4 : G2 → G4. Then G1 × G2 ∼=

G3 ×G4 via the isomorphism

ϕ : G1 ×G2 → G3 ×G4, ϕ(a, b) = (ϕ1,3(a), ϕ2,4(b)).

2. The map ϕ : G1 × G2 → G2 × G1 defined by ϕ(a, b) = (b, a) is an

isomorphism. So, G1 ×G2 ∼= G2 ×G1.

3. Themapϕ : G1×(G2×G3)→ G1×G2×G3 defined byϕ(a, (b, c)) =

(a, b, c) is an isomorphism. Thus G1× (G2×G3) ∼= G1×G2×G3.

Example: Find all the abelian non-isomorphic groups of order 720.

First of all, let us find all elementary divisors of 720 = 24325:
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24, 32, 5 24, 3, 3, 5

23, 2, 32, 5 23, 2, 3, 3, 5

22, 22, 32, 5 22, 22, 3, 3, 5

2, 2, 22, 32, 5 2, 2, 22, 3, 3, 5

2, 2, 2, 2, 32, 5 2, 2, 2, 2, 3, 3, 5.

Therefore, the abelian non-isomorphic groups of order 720 are:

Z16 × Z9 × Z5 Z16 × Z3 × Z3 × Z5

Z8 × Z2 × Z9 × Z5 Z8 × Z2 × Z3 × Z3 × Z5

Z4 × Z4 × Z9 × Z5 Z4 × Z4 × Z3 × Z3 × Z5

Z2 × Z2 × Z4 × Z9 × Z5 Z2 × Z2 × Z4 × Z3 × Z3 × Z5

Z2 × Z2 × Z2 × Z2 × Z9 × Z5 Z2 × Z2 × Z2 × Z2 × Z3 × Z3 × Z5.

Problems:

1. Prove that if G is abelain group of order 15, then G is cyclic.

2. Let G = Z4 × Z6. Find the order of (2, 3) ∈ G.

3. Let G = Z4 × Z12 × Z15. Find the order of (3, 10, 9) ∈ G.

4. Find all abelian non-isomorphic groups of oreder 100.
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Groups acting on sets

Definition: Let (G, ?) be a group, and let S be a nonempty set. The

action (left action) of G on S is a map y: G × S → S defined by

y (g, s) = gs for all g ∈ G and s ∈ S such that

1. es = s, where e is the identity of G;

2. (g ? g′)s = g(g′s).

In similar way, we can defined the right action of G on S.

Example: [Trivial action] Let (G, ?) be a group, and letS be a nonempty

set. Define the map y: G × S → S by y (g, s) = s. Then this map

represents an action of G on S, called the trivial action. In fact,

1. es = s;

2. (g ? g′)s = s = g′s = g(g′s).

Example: I. Let (G, ?) be a group. The map y: G × G → G defined

by y (g, g′) = g ? g′ is a group action. In fact,

1. eg = e ? g = g;

2. (g ? g′)g′′ = (g ? g′) ? g′′ = g ? (g′ ? g′′) = g ? (g′g′′) = g(g′g′′).

Example: II. Let (G, ?) be a group, and let H ≤ G. The map y:

H ×G→ G defined byy (h, g) = h ? g ? h−1 is a group action. In fact,

1. eg = e ? g ? e−1 = g ? e = g;

2. Let h, h′ ∈ H and g ∈ G. Then

(h ? h′)g = (h ? h′) ? g ? (h ? h′)−1 = (h ? h′) ? g ? (h′−1 ? h−1)

= h ? (h′ ? g ? h′−1) ? h−1 = h(h′ ? g ? h′−1) = h(h′g).
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Problems: Let (G, ?) be a group, and let H ≤ G.

1. Prove that y: H × G → G defined by y (h, g) = h ? g is a group

action.

2. Let H E G. Prove that y: G × H → H defined by y (g, h) =

g ? h ? g−1 is a group action.

3. Let S = {H : H ≤ G}. Prove that y: G × S → S defined by

y (g,H) = g ? H ? g−1 is a group action.

Orbits and isotropic groups

Definition: Let (G, ?) be a group, and let S be a nonempty set. The

orbit of an element s ∈ S under the action y: G × S → S, written

Orb(s), is the set

Orb(s) = {gs : g ∈ G}.

The stabilizer of an element s ∈ S, written Stab(s), is the set

Stab(s) = {g ∈ G : gs = s}.

In general, the stabilizer of A ⊆ S is define to be the set

Stab(A) = {g ∈ G : gA = A}

where gA = {gs : s ∈ A}.

Theorem: Let (G, ?) be a group acting on a set S, and let s be an

element in S, A ⊆ S. Then

1. Stab(s) ≤ G.

2. Stab(A) ≤ G.

3. [G : Stab(s)] = |Orb(s)|.
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Proof

1. Recall, Stab(s) = {g ∈ G : gs = s} ⊆ G. Then

(a). Since es = s, where e is the identity of G =⇒ e ∈ Stab(s).

(b). Let g, g′ ∈ Stab(s). Then gs = s and g′s = s and hence

g′−1s = s. Want to prove that g ∗ g′−1 ∈ Stab(s). Note that

(g ∗ g′−1)s = g(g′−1s) = gs = s.

Thus, Stab(s) ≤ G.

2. Similarly, we can prove that Stab(A) ≤ G.

3. Suppose L = {x ? Stab(s) : x ∈ G} be the set of all distinct left

cosets of Stab(s). Define a map f : L→ Orb(s) by

f(x ? Stab(s)) =y (x, s) = xs.

Want to show that f is a bĳection.

(a). f is well-defined and one-one:

x ? Stab(s) = y ? Stab(s)⇐⇒ y−1 ? x ∈ Stab(s)

⇐⇒ (y−1 ? x)s = y−1(xs) = s

⇐⇒ y(y−1(xs)) = ys

⇐⇒ (y ? y−1)(xs)) = ys

⇐⇒ e(xs) = ys⇐⇒ xs = ys

⇐⇒ f(x ? Stab(s)) = f(y ? Stab(s)).
(b). f is onto: Assume that z ∈ Orb(s). So, there is g ∈ G such that

z = gs. Note that, g ? Stab(s) ∈ L and

f(g ? Stab(s)) = gs = z.

Thus, [G : Stab(s)] = |L| = |Orb(s)|.
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Example: Consider the symmetric group (S4, ◦). Let S4 acting on the

set S = {1, 2, 3, 4} byy (σ, i) = σ(i).

Recall, S4 has 24 permutations: e, (1 2), (1 3), (1 4), (2 3), (2 4),

(3 4), (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3),

(1 2 3 4), (1 4 3 2), (1 2 4 3), (1 3 4 2), (1 3 2 4), (1 4 2 3), (1 2)◦(3 4),

(1 3) ◦ (2 4), (1 4) ◦ (2 3).

1. Let us find Orb(3) and Stab(4):

Orb(3) = {σ(3) : σ ∈ S4} = {1, 2, 3, 4} = S.

Stab(4) = {σ ∈ S4 : σ(4) = 4}

= {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.
2. Let us find Stab({1, 4}):

Stab({1, 4}) = {σ ∈ S4 : σ{1, 4} = {1, 4}} = {e, (2 3)}.

Sylow Theorems

Recall, if (G, ?) is a finite group, the by Lagrange theorem, the order

of a subgroup of G must be divided the order of G. For the finite abelian

groups and finite cyclic group the converse of Lagrange theorem is also

true. Now, we consider the Sylow theorems for finite group of special

order.

Theorem: [First Sylow theorem] Let (G, ?) be a finite group of order

pnm, where p is a prime and n ∈ Z+; gcd(p,m) = 1. Then

1. G has subgroup of order pk for all 1 ≤ k ≤ n.

2. If H ≤ G and |H| = pk; 1 ≤ k < n, then there is a subgroup

K ≤ G, |K| = pk+1 such that H EK.
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Definition: Let p be a prime number. A (G, ?) is said to be p-group

if order of any element in G is pk for some non-negative integer k. A

subgroup H ≤ G is called p-subgroup if it is p-group. If G a finite a

group such that p is a prime divides |G|. A subgroup P ≤ G is said to

be Sylow p-subgroup if P is a maximal p-subgroup of G. The set of all

Sylow p-subgroups of G is denoted by Sylp(G).

Note that, the first Sylow theorem emphasizes that Sylp(G) 6= ∅ for

any prime p divides |G|.

Example: Show that Z10 is not 2-group. Find all Sylow 2-subgroups,

and Sylow 5-subgroups of Z10.

Answer: We know that Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let us find

the order of each element in Z10:

a ∈ Z10 o(a) 〈a〉

0 1 = 30 {0}

1 o(1)
gcd(1,10) = 10

1 = 10 Z10

2 o(1)
gcd(2,10) = 10

2 = 5 = 51 {2, 4, 6, 8, 0}

3 o(1)
gcd(3,10) = 10

1 = 10 Z10

4 o(1)
gcd(4,10) = 10

2 = 5 = 51 {4, 8, 2, 6, 0}

5 o(1)
gcd(5,10) = 10

5 = 2 = 21 {5, 0}

6 o(1)
gcd(6,10) = 10

2 = 5 = 51 {6, 2, 8, 4, 0}

7 o(1)
gcd(7,10) = 10

1 = 10 Z10

8 o(1)
gcd(8,10) = 10

2 = 5 = 51 {8, 6, 4, 2, 0}

9 o(1)
gcd(9,10) = 10

1 = 10 Z10.

Since |Z10| = 10 which is not positive power of 2, thenZ10 is not 2-group.
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The only Sylow 2-subgroups of Z10 is 〈5〉. The only Sylow 5-subgroups

of Z10 is 〈2〉.

Theorem: [Second Sylow theorem] Let (G, ?) be a finite group of order

pnm, where p is a prime and n ∈ Z+; gcd(p,m) = 1. IfH,K ∈ Sylp(G),

then H,K are conjugate, i.e., there is g ∈ G such that g−1 ? K ? g = H .

Moreover, H is unique iff H EG.

Theorem: [Third Sylow theorem] Let (G, ?) be a finite group of order

pnm, where p is a prime and n ∈ Z+; gcd(p,m) = 1. If |Sylp(G)| = np,

then

1. np = 1(modp),

2. np divides |G|.

Example: I. Consider the symmetric group (S3, ◦) which has 6 permu-

tations, i.e., |S3| = 6 = 2 · 3. Let us determine all Sylow subgroup of

S3.

1. Syl2(S3): The divisors of 6 are 1, 2, 3, 6. According to third Sylow

theorem n2 = 1(mod2) and divides |S3| = 6. So, either n2 = 1 or

n2 = 3. It is clear that

H1 = 〈(1 2)〉, H2 = 〈(1 3)〉 and H3 = 〈(2 3)〉

are subgroups of S3 of order 2. Thus, n2 = 3.

2. Syl3(S3): Again, by apply the Sylow theorem, we have n3 = 1(mod

3) and divides |S3| = 6. So, n3 = 1. It follows that there is only one

Sylow 3-subgroup of S3, namely

H4 = 〈(1 2 3)〉 = {e, (1 2 3), (1 3 2)}.

Hence, H4 E S3 according to the second Sylow theorem.
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Example: II. Let (G, ?) be a group of order 231. Prove that there are

normal subgroups of G of orders 7 and 11.

Note that, |G| = 231 = 3 · 7 · 11. Now

1. Syl7(G): The divisors of 231 are 1, 3, 7, 11, 21, 33, 77, 231. Accord-

ing to third Sylow theorem n7 = 1(mod7) and divides |G| = 231.

So, n7 = 1. It follows that there is only one Sylow 7-subgroup H of

G and hence H EG according to the second Sylow theorem.

2. Syl11(G): The divisors of 231 are 1, 3, 7, 11, 21, 33, 77, 231. Accord-

ing to third Sylow theorem n11 = 1(mod11) and divides |G| = 231.

So, n11 = 1. It follows that there is only one Sylow 11-subgroup K

of G and hence K EG according to the second Sylow theorem.

Example: III. Show that there is no simple group G of order 105.

Answer: Note that 105 = 3× 5× 7. By using Third Sylow theorem,

we have n3 = 1 or 7, n5 = 1 or 21. and n7 = 1 or 15

1. If n3 = 1 or n5 = 1 or n7 = 1, then G is not simple.

2. If G is simple, then n3 = 7, n5 = 21 and n7 = 15. Hence, G has

7×2 = 14 elements of order 3,G has 21×4 = 84 elements of order 5,

and 15×6 = 90 elements of order 7. Thus, |G| ≥ 14+84+90 = 188

which is impossible. So, G is not simple.

Theorem: Let G be a finite group of order pnm, where p is a prime

and p > m > 1. Then, G is not simple.

Proof By using third Sylow theorem, we have

1. np = 1(modp),
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2. np divides |G| = pnm.

So, np = pk + 1 for some integer k and np|pnm. Hence, either np = 1 or

np = m. Since p > m > 1, then np 6= m. Therefore, np = 1 and hence

G has unique normal p-subgroup H . Thus, G is not simple.

Example: Let us show that there is no simple group G of order 6, 10,

14, 15, 18, 20, 21, 22, 26, 28.

According to the above theorem:

1. Since 6 = 3× 2. Take p = 3 andm = 2. So, there is unique normal

H ∈ Syl3(G).

2. Since 10 = 5×2. Take p = 5 andm = 2. So, there is unique normal

H ∈ Syl5(G).

3. Since 14 = 7×2. Take p = 7 andm = 2. So, there is unique normal

H ∈ Syl7(G).

4. Since 15 = 5×3. Take p = 5 andm = 3. So, there is unique normal

H ∈ Syl5(G).

5. Since 18 = 32 × 2. Take p = 3 and m = 2. So, there is unique

normal H ∈ Syl3(G).

6. Since 20 = 5×4. Take p = 5 andm = 4. So, there is unique normal

H ∈ Syl5(G).

7. Since 21 = 7×3. Take p = 7 andm = 3. So, there is unique normal

H ∈ Syl7(G).

8. Since 22 = 11 × 2. Take p = 11 and m = 2. So, there is unique

normal H ∈ Syl11(G).

9. Since 26 = 13 × 2. Take p = 13 and m = 2. So, there is unique

normal H ∈ Syl13(G).
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10. Since 28 = 7×4. Take p = 7 andm = 4. So, there is unique normal

H ∈ Syl7(G).

EXERCISES

1. Prove or disprove

(a). The order of the element (2, 3) ∈ Z6 × Z15 is 5.

(b). The group Z7 × Z17 × Z27 × Z37 is not cyclic.

(c). There is only one cyclic group of order 2022.

(d). There is an abelian group isomorphic to a non-abelian group.

(e). Z3 × Z9 ∼= Z27.

(f). IfG is an abelian group of order 15 andm divides 15, thenG has

a subgroup of orderm.

(g). If G is group of order 957, then G is cyclic.

(h). There is non-abelian group of order 255.

(i). There is a simple group of order 2021.

(j). If G is an abelian group of order 72, then G has a subgroup of

order 8.

(k). Z4 × Z15 ∼= Z6 × Z10.

(l). If g = (2, (3 4 5)) ∈ Z10 ×S5, then o(g) = 15.

2. Consider the groups (R,+) and (R × R,+). Define the map y:

R× (R× R)→ R× R defined by r y (x, y) = (x+ ry, y).

(a). Show that this map is a group action.

(b). Find Orb((1, 0)), Orb((1, 1)) and Stab((0, 0)).

3. Let (G, ?) be a group of order p, q, where p, q are primes and p < q.

Prove that

(a). G has only one normal subgroup of order q.



Dr
. M

oh
am
me
d A

li

Ibr
ahi
m

Al
abb

oo
d

CONTENTS – 14 –

(b). If q 6= 1(modp), then G is cyclic group.

4. Let (G, ?) be a group of order 231 = 3× 7× 11 and H ∈ Syl11(G),

K ∈ Syl7(G). Prove that

(a). H EG and K EG.

(b). G has a cyclic subgroup of order 77.

5. LetG be a group of order p2q, where p, q are prime numbers, and q 6≡

1(modp), p2 6≡ 1(modq). Prove that G ∼= Zp2q or G ∼= Zp × Zpq.

6. Prove that if G is a group of order 231 and H ∈ Syl11(G), then

H ⊆ Z(G).

7. Prove that if G is a group of order 1045 and H ∈ Syl19(G), K ∈

Syl11(G), then K EG and H ⊆ Z(G).

8. Prove that if G is a group of order 60, then either G has 4 elements

of order 5, or G has 24 elements of order 5.

9. Prove that if G is a group of order 60 with no non-trivial normal

subgroups, then G has no subgroup of order 30.

10. Prove that any group of order 40, 45, 63, 84, 135, 140, 165, 175, 176,

189, 195, 200 is not simple.

11. Show that there is no simple group G of order 33, 34, 35, 38, 39, 42,

44, 46, 50, 51.

12. Show that there is no simple group G of order 132.


