Institute: University of Basrah

College of Sciences

Department of Mathematics

Email: mohna_l@yahoo.com

mohammed . ibrahim@uobasrah.edu.iq

Date: October 8, 2022

MOHAMMED ALI IBRAHIM

Haly of bnowledge cs to say 7 do wot buow”


mailto:mohna_l@yahoo.com
mailto:mohammed.ibrahim@uobasrah.edu.iq




GROUP THEORY: PART III

> =

Direct product of groups

Recall that the direct product of the groups (G1, *1), . . ., (Gy, *,,) is the
group (G, x), where G = G x...XGandforevery (ay,...,a,), (b1,...,b,) €
G we have

(@1, ..y an) * by, 7 by) = (a1 %1 b1, .« oy Gy %y byy).
TaEOREM: If G = G} X ... x G, and (aq,...,a,) € G such that

o(a;) =r;foralli =1,...,n,theno(a) = L.e.m(ry,...,r,).

If\this true for n = 2, (then it is true for all positiverinteger

n, (by using mathematical induction). So, it is enough,to prove that
a = (a1,a9) € G1 X Go =>.0(a) = l.c.m(r1, 75

Let o(a) = r. Then a" = (af,a}) = fe;1,ea), where ey, ey are the

identities of G, (o respectively. So, aj = "¢; and a, = es. This im-

plies 71| and ro|r and hence r = 71795 for some integer s. Therefore,

l.c.m(ry,79) 7.
On the other hand, =™ = (gieminr2) ghemtriraly o o)y
implies o(a) = r|l.c.m(ry,79). Thus, o(a) = l.c.m(ry, ).

I ExAMPLE: 1. Find the order of the element (8, 4, 10) € Zj5 X Zgy X Zag.
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Let a = (8,4, 10). Note that

o(1) 12 :
§) =) == _3inz
°®) = ged(s.12) ~ 4~ SinZe
o(1) 60 :
H=—2) 2 15inZ
o) ged(4,60) 4 —
1 24
o10)= — 2 2 e

ged(10,24) 2
Thus, o(a) = l.c.m(3, 15, 12) = 60.

I ExAampLE: II. Find all elements in Z4 x Z3 of order 12.

We know that Z, = {0,1,2,3¥%and Zs = {0, 1,2}. Let us construct
the following table:

a€Zy | ra=0la) | bEZs | ro=0(b) | Lem(ry,rs)
0 1 0 1 1 X
1 4 0 1 4 X
2 2 0 1 2X
3 4 0 1 4 X
0 1 1 3 3X
1 4 1 3 12
2 2 1 3 6X
3 4 1 3 12 v
0 1 2 3 3X
1 4 2 3 12 v
2 2 2 3 6 X
3 4 2 3 12 v

So, the only elements of order 12 in Z, x Zs are (1,1),(3,1),(1,2)
and (3, 2).

Remark:

. Every finite abelian group is a direct product of cyclic groups of

orders p® for some primes p and some positive integers .
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2.If (G1,%1), . .-, (Gpn, *,,) are groups of order rq,...,7,, then G =
G1 X ... x G, is cyclic group if and only if ged(r;,7;) = 1 for all
i j.

3.fm=nry...r,, then Z,, = Z,
i # j.

4.1 m = pi'...pl» is a prime factorization of m, where p; are all

X ...X Ly, if ged(ry, ;) = 1 for all

1

distinct, then Z, = Zyn X ... X Zyn.

THEOREM: If G, G5, G3 and G4 are groups, then
I. G1 = Gz and Gy = Gy implies G X Gy = G3 X Gy.
2. G1 X Gy = Gy X G.
3. G1 X (Gy x G3) = G1 X Go X Gs.

1. Suppese that G; = (G5 via.the isomorphism ¢; 3 : G1,—¥G3 and

G1 = (3 via the isomotphism ¢y 4 1 Go — Gy ~Fhen'G; x Gy =
G3 X G4 via the isomorphism
©: G X G — Gy X Gy, p(a, b)=¢13(a), v24(b)).
2. The map ¢ : G X Gy — G2 xy(G; defined by ¢(a,b) = (b, a) is an
isomorphism. So, G; X Gy = G, x (.
3. Themap ¢ : G1x(GyxG3) = G xGyxG3defined by ¢(a, (b, c)) =
(a, b, ¢) is an isomorphism. Thus G x (G2 x G3) = G x G2 X Gs.

I ExamMPLE: Find all the abelian non-isomorphic groups of order 720.

First of all, let us find all elementary divisors of 720 = 243%5:



CONTENTS —4_

24 32 5 24.3.3.5

23.2.32.5 23.2.3.3,5

22 92 325 |2292335

2,2,22.325 12,2,22.3.3,5

2,2,2,2,32.5(2,2,2,2,33, 5

Therefore, the abelian non-isomorphic groups of order 720 are:

Zng X L9 X Zis Vg X Lz X Lz X L

Zig X Ly X Lig X Zi 1ig X Ly X Ly X Lz X L

Ly X Ly X Zig X 7§ Ly X Ly X Loy X iz X L

Lo X Ly X Loy Xalog™ X Ui, Lo X DX Ty X iz X Lig X Uis,

Lo X Lg% Liy=X Do X Dig X Lis | Zinl X Wy X Ly X Dug X DK L3 X Lis,.

PROBLEMS:
1. Prove that if GG is abelain group of order 15, then G is cyclic.
2. Let G = Z4 X Z¢. Find the order of (2,3) € G.
3. Let G = Z4 X Zy3 X Z15. Find the order of (3,10, 9) € G.

4. Find all abelian non-isomorphic groups of oreder 100.
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Groups acting on sets

DEFINITION: Let (G, %) be a group, and let S be a nonempty set. The
action (left action) of G on S is a map ~: G x § — S defined by
~ (g,s) = gsforall g € G and s € S such that

. es = s, where e is the identity of G;
2. (gxg')s =g(g's).

In similar way, we can defined the right action of GG on S.

ExampLE: [Trivial action] Let (G, x) be a group, and let S be a nonempty
set. Define the map ~: G X S — S by »~ (g,5) = s. Then this map
represents an action of G on .9, called the trivial action. In fact,

l. es = s;

2. (g*9g)s=s=4g's=g(g's).

ExAMPLE: 1. Let (G, %) be a group. The map ~: G x G — G defined
by ~ (g,9’) = g x ¢’ is a group action. In fact,

l.eg=e*xg=g;

2.(gx9)g" = (g*g)xg" =g (g xg") =g+ (g'9") = 9(g'9").

ExampLE: II. Let (G, *) be a group, and let H < G. The map
H x G — G defined by ~ (h, g) = h*g*h~!isa group action. In fact,
l.eg=exgxe l=gxe=g;
2. Leth,h' € Hand g € G. Then
(hxh)g = (hxh)*xgx(hxh) = ((hxh)xgx (W xht)
=hx (W %gxh D xht=h(kxgxh1)=h(lyg).
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PrROBLEMS: Let (G, *) be a group, and let H < G.
1. Prove that ~: H X G — G defined by ~ (h,g) = h x g is a group
action.
2. Let H 9 G. Prove that ~: G x H — H defined by ~ (g,h) =
1

gxhxg™~
3.Let S = {H : H < G}. Prove that ~: G x S — S defined by

is a group action.

~ (g, H) = g% H % g~ is a group action.

Orbits and isotropic groups

DEFINITION: Let (G, x) be a group, and let S be a nonempty set. The
orbit of an element s € S under the action ~: G x S — S, written
Orb(s), is the set
Orb(s) ={gs: g € G}.

The stabilizer of an element s € .S, written Stab(s), is the set

Stab(s) = {g € G : gs = s}.
In general, the stabilizer of A C S is define to be the set

Stab(A) ={g € G: gA = A}
where gA = {gs : s € A}.
THEOREM: Let (G, *) be a group acting on a set S, and let s be an
elementin S, A C S. Then

1. Stab(s) < G.

2. Stab(A) < G.
3. [G : Stab(s)] = |Orb(s)].
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1. Recall, Stab(s) = {g € G: gs = s} C G. Then
(a). Since es = s, where e is the identity of G = e € Stab(s).
(b). Let g,¢' € Stab(s). Then gs = s and ¢’s = s and hence
g'~1s = 5. Want to prove that g * ¢’'€ Stab(s). Note that
(9% 9 s =g(g\s) Fgs = s.
Thus, Stab(s) < G.
2. Similarly, we can prove that.Stab(A) < G.

3. Suppose L = {x « Stab(s)y x € G} be the set of all distinct left
cosets of Stab(s). Define a map f : L — Orb(s) by

f(x *Stab(s)) =~ (@, sh= xs.
Want'to show that f is a bijection.
(a)ymf.is well-defined and ones/One:
T x Stab(s) = y xStab(s) <= 3! x v € Stab(4)

— (y ' xp)s=p (2s) = s
= yly_(as)) =ys
= (il )(ws)) = ys
== e(ws) = ys < xs = ys

<= f(x % Stab(s)) = f(y * Stab(s)).
(b). f is onto: Assume that z € Orb(s). So, there is g € G such that

z = gs. Note that, g x Stab(s) € L and

f(g*Stab(s)) = gs = z.

Thus, [G : Stab(s)] = |L| = |Orb(s)|.
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ExamMPLE: Consider the symmetric group (54, o). Let Sy acting on the

set S ={1,2,3,4} by ~ (0,7) = o (i).

Recall, Sy has 24 permutations: e, (1 2), (1 3), (1 4), (2 3), (2 4),
(34),(123),(132),(124),(142),(134),(143),(234),(243),
(1234),(1432),(1243),(1342),(1824)01423),(12)0(34),
(13)0(24),(14)0(23).

I. Let us find Orb(3) and Stab(4):
Orb(3) = {o(3) w0 € S4} ={1,2,3,4} = S.
Stab(4) ={¢ &5, : 0(4) = 4}

={e,(12),(13),(23)(123),(132)}.
2. Let us find.Stab({1,4}):

Stab({1,4}) = {0 € Sy . oL, 4} = {1,4}} = {e/123)}.

Sylow Theorems

Recall, if (G, x) is a finite group, the by Lagrange theorem, the order
of a subgroup of G must be divided the ordet of GG. For the finite abelian
groups and finite cyclic group the converse of Lagrange theorem is also
true. Now, we consider the Sylow theorems for finite group of special
order.

THEOREM: [First Sylow theorem] Let (G, x) be a finite group of order
p"m, where p is a prime and n € Z"; ged(p, m) = 1. Then
1. G has subgroup of order p* forall 1 < k < n.
2.If H < G and |H| = p*;1 < k < n, then there is a subgroup
K <G, |K|=p" ' suchthat H < K.
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DEFINITION: Let p be a prime number. A (G, %) is said to be p-group
if order of any element in G is p* for some non-negative integer k. A
subgroup H < G is called p-subgroup if it is p-group. If GG a finite a
group such that p is a prime divides |G|. A subgroup P < G is said to
be Sylow p-subgroup if P is a maximal p-subgroup of G. The set of all
Sylow p-subgroups of G is denoted by Syl (G).

Note that, the first Sylow theoremwemphasizes that Syl (G) # () for
any prime p divides |G|.
ExAamMPLE: Show that Z, is not 2-group. Find all Sylow 2-subgroups,

and Sylow 5-subgroups of Z.

Answer: (We know that Z;y = {0, 1,2,3y4,5,6,7,8,9}. Let us find

the order of each element in Z:

a € Zy o(a) (@)
0 1=3" {0}
1 gcc;)((ll,)l()) =1 =10 Zn
2 gcg((Zl,)IO) - % =5 =5 12,4,6,8,0}
3 gcci)((?i)lo) - 1TO = 10 Zao
4 gcé)((i,)lo) - % =5=75 14,8,2,6,0}
5 gcc(f((g,)lo) = % =2=2 {5,0}
6 | ondio =5 =5=5"]{6,2,84,0}
7 gcdo((71,)10) =1 =10 Ly
8 | sopdy =2 =5=5"|{8,6,4,2,0}
§ gcc?((gl,)lo) — 110 =10 Zno.
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The only Sylow 2-subgroups of Ziq is (5). The only Sylow 5-subgroups
of Zyp is (2).

THEOREM: [Second Sylow theorem] Let (G, ) be a finite group of order
p"m, where pis a prime and n € Z*; ged(p,m) = 1. If H, K € Syl (G),
then H, K are conjugate, i.e., there is g € G such that g~ « K « g = H.

Moreover, H is unique iff H 1 G.

THEOREM: [Third Sylow theorem] Let (G, %) be a finite group of order
p"m, where p is a prime and n € Z*; gcd(p, m) = 1. If |Syl, (G)| = n,,
then

1. n, = 1(modp),

2. n, divides |G|.

ExamPLE: 1. Consider the symmetric group (S5, o) which has 6 permu-
tations, i.e., |S3] = 6 = 2 - 3. Let us determine all Sylow subgroup of

S3.

I. Syly(S3): The divisors‘of 6 are 1,2,3,6. According to third Sylow
theorem ny = 1(mod2) and divides |95},=+6. So, either ny = 1 or
noy = 3. It is clear that

Hy = ((12)), Hy = ((k 3)) and Hy = ((2 3))
are subgroups of S5 of order 2. Thus, no, = 3.

2. Syls(.S3): Again, by apply the Sylow theorem, we have ng = 1(mod
3) and divides |S3| = 6. So, n3 = 1. It follows that there is only one
Sylow 3-subgroup of S3, namely

Hy=((123)) ={e, (123),(132)}.

Hence, H4 < S3 according to the second Sylow theorem.
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ExampLE: II. Let (G, ) be a group of order 231. Prove that there are

normal subgroups of GG of orders 7 and 11.

Note that, |G| =231 =3-7-11. Now

1. Syl-(G): The divisors of 231 are 1,3, 7, 11, 21,33, 77, 231. Accord-
ing to third Sylow theorem n; = 1(med7) and divides |G| = 231.
So, ny; = 1. It follows that there'1sionly one Sylow 7-subgroup H of
GG and hence H < G according to the second Sylow theorem.

2. Syly;(G): The divisorstof 231 are 1,3, 7,11, 21, 33,77,231. Accord-
ing to third Sylow/theoréem n;; = 1(mod11) and divides |G| = 231.
So, n1; = 1. It follows that there is onlywone Sylow 11-subgroup K

of G and*hence K < (G according to the second Sylow theorem.

I ExampLE: III. Show that there is no simple group G of order 105.

Answer: Note that 105/="38 X 5 x 7. By using Third Sylow theorem,

we have ng =1 or 7, n5; =1 or 21. and n; = 1or 15

1. If ng = 1 or n5 = 1 or ny = 1, then G"is. not’simple.
2. If G is simple, then ng = 7, nsg.= 21-and n; = 15. Hence, G has
7x2 = 14 elements of order 3, G has 21 x4 = 84 elements of order 5,

and 15 x 6 = 90 elements of order 7. Thus, |G| > 14484490 = 188

which is impossible. So, G is not simple.

THEOREM: Let GG be a finite group of order p"m, where p is a prime

and p > m > 1. Then, G is not simple.

By using third Sylow theorem, we have

1. n, = 1(modp),
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2. n, divides |G| = p"m.

So, n, = pk + 1 for some integer k and n,|p"m. Hence, either n, = 1 or
n, = m. Since p > m > 1, then n, # m. Therefore, n, = 1 and hence
GG has unique normal p-subgroup H. Thus, G is not simple.

ExXAMPLE: Let us show that there is no simple group G of order 6, 10,

14, 15, 18, 20, 21, 22, 26, 28.

According to the above theorém:

1. Since 6 = 3 x 2. Take'p. =3 and m = 2. So, there is unique normal
H € Syl;(G).

2. Since 10,= 5 X 2./Take p = 5 and m =/25So, there is unique normal
H € SykE(G):

3. Since 14 = 7 x 2. Take p = 7 and ' = 2. So, there is unique normal
He Syl;(G).

45 Since 15 = 5 x 3/ Takeyp = 5 and m = 3. So, there'is unique normal
H € Syl;(G).

5. Since 18 = 32 x 2. Take p = 3 and'm = 2. So, there is unique
normal H € Syl;(G).

6. Since 20 = 5 x 4. Take p = 5 and m = 4. So, there is unique normal
H € Syl (G).

7. Since 21 = 7 x 3. Take p = 7and m = 3. So, there is unique normal
H € Syl;(G).

8. Since 22 = 11 x 2. Take p = 11 and m = 2. So, there is unique
normal H € Syl;;(G).

9. Since 26 = 13 x 2. Take p = 13 and m = 2. So, there is unique
normal H € Syl 5(G).
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10. Since 28 = 7 x 4. Take p = 7 and m = 4. So, there is unique normal

EXERCISES

1. Prove or disprove
(a). The order of the element (2, 3) € Zg'X Z5 is 5.
(b). The group Z; X Zy7 X Zso7 X(Z3z is not cyclic.
(c). There is only one cyclic grtoup of order 2022.
(d). There is an abelian group isomorphic to a non-abelian group.
(€). Z3 X Ly = Zoz.
(f). If G is an abelian group of order 15 and,m divides 15, then GG has
a subgreup.of order m.
(2). If G.is group of order 957, then G is cyclic.
(h).“There is non-abelian group.of order 255.
(1). There is a simple group of order 2021.
(j). If G is an abelian group of order 72, then, (G has a subgroup of
order 8.
(k). Ziy X Zas = Zg X L.
(). If g=(2,(345)) € Z1p x S, then o(g) = 15.
2. Consider the groups (R, +) and (R x R, +). Define the map ~:
R x (R x R) — R x R defined by r ~ (z,y) = (z + ry, y).
(a). Show that this map is a group action.
(b). Find Orb((1,0)), Orb((1,1)) and Stab((0,0)).
3. Let (G, %) be a group of order p, g, where p, ¢ are primes and p < q.
Prove that

(a). G has only one normal subgroup of order q.
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(b). If ¢ # 1(modp), then G is cyclic group.
4. Let (G, x) be a group of order 231 =3 x 7 x 11 and H € Syl;;(G),
K € Syl (G). Prove that
(a). H<4Gand K <.
(b). G has a cyclic subgroup of order 77.
5. Let G be a group of order p?q, where p)gare prime numbers, and ¢ #
1(modp), p* # 1(modq). Prove'that G & Z,2, or G = Z,, X ZLy,.
6. Prove that if G is a group of-erder 231 and H € Syl;;(G), then
H C Z(G).
7. Prove that if G is a greuprof order 1045 and H € Syl,4(G), K €
Syli;(G), then K,.Jd'G and H C Z(G).
8. Prove that if/Ghis a group of order 60,/then €ither G has 4 elements
of order B, or (G has 24 elements of order 5.
9. Prove that if GG is a group of order 60 with no non-trivial normal
subgroups, then GG has,nessubgroup of order 30.
10, Prove that any group of order 40, 45, 63, 8441355140, 165, 175, 176,
189, 195, 200 is not simple.
11. Show that there is no simple group G of order 33, 34, 35, 38, 39, 42,
44, 46, 50, 51.

12. Show that there is no simple group G of order 132.



